Thursday 15 March 2018

의사 결정 과정에서의 남태평양 생태계 서비스


의사 결정 과정에서 남태평양 생태계 서비스 제공
생태계 서비스는 인류가 자연 생태계로부터 얻는 이익입니다. 여기서 우리는 남 대양이 제공하는 주요 서비스를 확인합니다. 여기에는 수산물 공급, 양분 순환, 기후 규제 및 생물 다양성 유지와 관련된 문화적, 미적 이익이 포함됩니다. 남극 새우 (Euphausia superba Dana)만의 어획량 한도는 현재 전 세계 어선 어획량의 11 %에 해당합니다. 우리는 또한 남극 조약 체계 (ATS) 내의 의사 결정이 남극 크릴 어업의 관리를 사례 연구로 사용하여 생태계 서비스 간의 상충 관계를 고려하는 정도를 조사합니다. 이 어업의 관리는 어업 성과, 새우 자원의 상태 및 육식 동물 개체군의 상태와의 3 가지 방법을 고려한다. 그러나 이러한 구성 요소가 어획의 결과로 저하 될 수있는 다른 생태계 서비스를 얼마나 잘 나타내고 있는지에 대한 정보가 부족합니다. 수혜자가 이러한 생태계 서비스를 얼마나 소중하게 생각하는지에 대한 정보가 부족합니다. 공식적인 생태계 평가는 이러한 지식 격차를 해소하는 데 도움이 될 것입니다. 또한 ATS를 통한 의사 결정을 조화시키고 관련 생태계 서비스에 대한 표준 재고 및 수혜자에게 제공하는 가치를 제공함으로써 남 대양 생태계 서비스의 세계적 인지도를 높일 수 있습니다.
제안 된 기사.
이 백서에 대한 업데이트 또는 게시 중단 요청을 제출하려면 업데이트 / 수정 / 삭제 요청을 제출하십시오.

유엔 파리 기후 회의 이후의 "남보다 더 많은 것"또는 "새로운 해안으로의 항해"이후의 남반구 해양 및 남극 생태계에 대한 기후 변화 영향에 대한 연구?
Julian Gutt 저자.
2015 년 COP21 UN 기후 회의의 주요 결과 인 파리 협약은 인위적 기후 변화에 대한 가장 명확하게 정의 된 정치적 진술과 기후 변화의 감소 필요성을 포함했습니다. 여론 조사에서 남극 생태계 연구자들은 인위적 기후 변화의 존재에 대한 증거를 제공하겠다는 임무와 그 영향이 달성 된 후에 과학이 발전해야하는 자신의 견해를 표명했다. 답변에 대한 네 가지 옵션이 제공되었습니다. 대다수는 기후 변화에 대한보다 나은 생태계 이해를위한 연구에 대한지지를 표명했습니다. 왜냐하면 중요한 질문은 아직 충분히 대답되지 않았기 때문입니다. 완화를위한 적용된 연구는 중간 정도의 지원을 받았다. 연구 전략에 변화가 없다면 유사한 지원을 받았다. 이는 새로운 개발이 이미 활발하게 진행된 결과 일 수 있지만 아직 답변이없는 예전의 불타는 질문 때문일 수 있습니다. 예 : 생물학적 이산화탄소 흡수원으로 작용하는 남부 해양에 과학자들은 완전히 새로운 과학 주제를 정의해야한다고 생각하는 전문가는 거의 없었다. 결과는 또한 경력 단계, 고용 기관 (선교 지향적 또는 독립적 임), 육상 또는 해양 과학자와 관련하여 응답자 그룹별로 개별적으로 분석되었습니다. 이해 관계자의 새로운 요구 사항은 새로운 연구 전략을 요구하지만 전통적인 학업 교육과 창의력이 여전히 필요하기 때문에 새로운 학생 코스와 대학 학위가 제안됩니다.
전자 보충 자료.
이 기사의 온라인 버전 (doi : 10.1007 / s00300-016-2059-y)에는 권한이 부여 된 사용자가 사용할 수있는 보충 자료가 포함되어 있습니다.
소개.
2015 년 11 월 파리에서 개최 된 제 21 차 기후 변화 협약 (UNFCCC)의 21 차 당사국 총회 (COP21)의 탁월한 성과는 지구 대기의 온난화를 제한하는 최초의 법적 구속력있는 목표였습니다. 파리 협정은 인위적인 기후 변화가 존재한다는 정책 입안자들 사이에서 가장 널리 받아 들여지고있는 합의에 기반을두고있다 : "기후 변화가 인간 사회에 긴급하고 돌이킬 수없는 위협이된다는 것을 인정한 당사국 총회 ... 파리를 채택하기로 결정한다. 협정. 이 협정은 기후 변화 위협에 대한 전세계적인 대응을 강화하는 것을 목표로하고있다. 지구 평균 기온 상승을 산업화 이전 수준보다 2 ℃ 낮은 온도로 유지하고 기온 제한 노력을 추구한다. 산업화 이전 수준보다 1.5 ℃ 높아진다 ... "(UNFCCC 2016). 파리 협정은 193 년에 서명되었고 COP21 (1916 년 11 월 현재)의 195 개 참가국 중 112 개국이 비준하고 2016 년 11 월 4 일에 발효되었다.
이 합의를 가능하게하기 위해 막대한 과학적 및 사회적 노력이 수행되었다 (IPCC 2014). 수백 명의 과학자들이 온실 가스 증가의 영향을 연구하고 미래에 대한 예측을 개발했다 (Anderegg 외. 2009). 이에 따라 인위적인 기후 변화의 존재와 그 영향이 지구 생물권에 미치는 과학적 증거를 제공하는 임무를 완수했다 (예 : Solomon et al., Hoegh-Guldberg and Bruno 2010, Chen et al. 2011, Cicerone and Nurse Sir 2014) . NGO, 정치적 의사 결정자 및 독립적 인 저널리즘을 포함한 시민 사회는 특히 인간 복지와 관련하여 주요 과학적 발견 및 결론의 보급 및 해석을 보장했습니다. 기후 변화에 대한 정부 간 패널이이 과정에서 핵심적인 역할을 담당했습니다. 그럼에도 불구하고, 공공 회의론의 산발적 인 경우가 남아있는 것처럼 보인다 (Poortinga et al. 2011).
이 개발을 바탕으로 선교 중심의 생태 연구의 변화가 관찰 될 수 있습니다. EU Horizon 2020 프로그램 (ec. europa. eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-focus_en. pdf; 2016 년 11 월 21 일 접근)과 같은 자금 조달 기회를 포함한 연구 기관 , 기후 변화에 관한 정부 간 패널 (IPCC 2014, Magnan et al. 2016) 및 EU-PolarNet (EU-PolarNet)은 주로 기후 변화가 생물 다양성과 생태계에 미치는 영향을 연구하는데 초점을 맞추지 않을 수있다. 생태계 기능에 대한 응답. 그들은 기술 개발 ( "청색 인프라")과 온실 가스 배출을 줄이거 나 줄이기위한 자연 기반 해결책을 포함한 관련 연구를 포함한 경제적 및 사회적 혜택을 지원합니다 (Rhodes 2016; eu - polarnet. eu / news - and - events / publications / access 2016 년 11 월 21 일). 파리 협정에 따라 기후 변화 완화 전략의 실행이 마라 케시에서 개최 된 COP22 2016의 주요 초점이되었습니다.
이 연구의 핵심은 온라인 의견 조사 결과입니다. 목표는 과학자들에게 인위적인 기후 변화의 존재를 대규모로 받아 들인 연구 방향의 요구 된 변화에 대한 목소리를내는 것이 었습니다. 이 조사는 남극의 육상 생태계와 해양 생태계에 초점을 두었습니다. 이 지역은 세계 표면의 약 10 %를 구성합니다. 의견 조사의 응답자들과 미래의 관점에 대한 다른 과학적 방향의 선호 이유는 논의되고 제 1 차 남극 연구 과학위원회 (SCAR) 남극 및 남부 해양 과학 호라이즌 스캔 (Kennicutt et al. 2015) (이하 SCAR Horizon Scan이라고 함).
배경.
이 견해 조사는 남극 생태계의 전문가를 대상으로 한 것으로, 한편으로는 그들의 작업 환경이 여러 가지면에서 독특하기 때문입니다. 첫째, 육지와 주변의 남 대양의 일부는 인근 대륙과 인접한 대양과 분리되어있다 (Clarke et al., 2005). 북극과는 달리 남극에는 원주민이 없으므로 CO 2 배출량은 매우 낮습니다. 다른 한편, 남극 생태계, 특히 남반구 해양은 전 지구 화학 - 물리적 순환에 기여하기 때문에 지구 시스템 전체에서 중요한 역할을한다 (Hall and Visbeck 2002; Meincke et al., 2003). (Turner et al. 2014 년) 및 생태계 재화와 용역 (Grant et al. 2013). 순환 극성 전류는 세 개의 다른 해양을 연결하고 잠재적으로 일부 생물체가 생태적 및 진화 적 시간 규모 내에서 전 세계적으로 분산되도록한다 (Strugnell et al., Leese et al 2010). 또한, 남극 생태계 서비스는 세계적 영향을 미친다. 예를 들어, O 2는 인간을 포함하여 호흡에 근본적으로 의존하는 세계적으로 발생하는 유기체의 이익을 위해 해양 생물의 1 차 생산 (조류 성장)에 의해 생산됩니다. 반대로, 세계의 어느 지역에서 생성되어 대기로 방출 된 이산화탄소는 남 대양에 흡수되어 바이오 매스로 전환된다 (Ducklow et al., 2001). 다른 거대 미량 영양소는 물 기둥과 퇴적물 표면의 미생물에 의해 재석 정됩니다. CO 2 - 유래 탄소를 포함한 특정 비율의 영양분은 지질 학적으로 매우 긴 기간 동안 퇴적물에 묻히는 반면 다른 것들은 이미 남부 해양에있는 새로운 1 차 생산의 기초를 제공한다. (Sarmiento et al., 2003). 지역적 다양성과 장기적인 효과를 포함하여 복잡한 글로벌 사이클에 대한 우리의 지식은 여전히 ​​불완전하다 (Marinov et al., 2006; Arrigo et al., 2008). 이것은 기후 변화로 인해 잠재적으로 위협을받는 가장 중요한 생태계 서비스의 선택 일뿐입니다. 그러나 남극의 지식을 포함시키지 않으면 지구의 생물권에 대한 포괄적 인 이해와 인간과의 관련성이 왜 완전하지 않은지를 명확하게 설명합니다.
전지구 적 현상으로서의 기후 변화에 대한 일반적인 기술에도 불구하고, 영향의 지역적 강도에는 큰 변화가있는 것으로 보인다 (Turner et al., 2005). 이것은 특히 남극해와 남극에서 나타난다 (Mayewski et al., 2009). 관측 된 지역 기후 변화에 대한 인위적인 기여는 활발하고 다소 논쟁의 여지가있는 토론을 가져왔다 (Böning et al., Thompson et al., Turner et al. 극지 정면 시스템에 따른 바다와 물을 포함하는 서 남극의 더 큰 지역은 수십 년 동안 전지구 평균보다 훨씬 더 온난화 된 것으로 잘 알려져있다. 이 온난화는 다양한 심층수 변화의 원인이되는 바람 패턴의 변화와 해빙 패턴의 변화 및 대기 온난화로 인한 가열을 포함하는 다양한 원인에 기인한다 (Turner et al., 2009b; Holland et al., 2010; Pritchard et al Dinniman et al., 2012). 그것은 육지 및 해양 생태계에 직접 및 간접적으로 영향을 미친다. 예 : 그것은 대륙의 녹지에 영향을 미친다 (Hill et al., 2011); (Atkinson et al., 2008), 미량 영양소에서 정점 육식 동물에 이르기까지 다양한 복합적인 이유와 더 관련이있다. (Atkinson et al., 2012), 남 대양에서 더 큰 유기체에서 작은 유기체로의 전환율 Moline et al. 2004). 이 기후 변화에 의해 유발 된 변동성은 남반구 환상 모드의 자연 현상에 의해 중첩된다 (Lovenduski and Gruber 2005). 그러나 남극 반도 (Domack et al. 2013)의 온난화는 최근 10 년 동안 중단 된 것처럼 보이지만, 이 현상은 장기간의 온난화 과정에서의 가변성의 일부로 간주된다 (Turner et al., 2016 ).
짧은 기간 동안 동극 남극에서 겉으로보기에 더 극지방으로 변하는 현상이 관찰되었지만, 그 이유는 전혀 이해되지 않았다 (Massom et al., 2013). 미래에, 인위적인 지구 기후 변화에 기인 한 환경 적 변화는 지금까지 영향을받은 것보다 더 큰 남 대양 지역에서 예측된다. (Gutt et al., 2015; Constable et al., 2016)과 관련하여 잠재적으로 해양 빙하 감소, 온난화 및 빙하 용해의 관점에서 볼 때, 해양 산성화, "기후의 계단 누이"는 특히 남 대양에서 해양 생태계에 대한 또 다른 큰 문제로 발전 할 수 있습니다. 대기 온난화 외에도 강수량 변화, 자외선 복사, 바람 패턴 및 산사태가 토지에서 가장 중요한 기후 변화 관련 동인이 될 수있다 (Convey and Smith 2006; Krinner et al., 2007; Fretwell et al., 2011). 게다가 "외계인"종의 도입은 기후 변화, 특히 (비록 배타적이지는 않지만) 육상 생태계에서 증폭 될 수있다 (Chown et al. 2011).
이러한 환경 변화에 대한 유기체의 반응은 잘 알려져 있지 않다. 그러나 선정 된 해양 종에 대한 귀중한 결과는 열 임계 값이 세기 말에 예측 된 온난화 조건에 가깝다는 것을 보여줍니다 (Peck 2011). 또한 명백하게 더 높은 표현형 가소성을 가진 종의 예외가 존재하는 것으로 보인다 (예 : Franklin and Seebacher 2009). 생태계 수준의 취약성에 대한 관찰은 거의 없지만 환경 변화에 대한 지구 평균 민감도를 보여주는 연구는 거의 없다 (Rogers et al., Saba 외 2014; Chown et al. 2015). 탄력성에 대한 연구 (자체 복구 능력)는 생태계 서비스를 이해하고 유지하는 데 중요합니다 (Oliver 등, 2015). 기후에 의해 유발 된 공동체 이동의 증거가 부족한지는 기후 변화 영향의 약점 때문인지, 아니면 그러한 변화가 남극의 "배경 소음"으로부터 분리되기가 특히 어려운지 여부는 불분명하다. 생태계 역 동성의 높은 공간적 패치 성 및 시간적 다양성 (Convey et al., 2014; Gutt et al., 2016).
기후 변화에 대한 우리의 생물권의 반응을 이해하는 과학은 주로 대학 및 박물관에서 주로 운영되는 독립적 인 학술 접근 방식과 정부, 비정부, 수익 또는 비영리 기관 또는 자금 제공 기관이 부여하는 조건부 계약 연구로 분류 할 수 있습니다. 많은 국가에서 예술과 과학의 자유는 헌법에 의해 보장됩니다. 그러나 필수 자원의 관점에서, 그러한 모든 과학은 정치적 의사 결정 과정에 달려있다. 응용 연구 프로젝트는 콘텐츠 및 자금 조달과 관련하여 선험적 조건이 있습니다. 한정된 기간 동안 더 넓고 정의 된 프로그램과 관련이있다. 대부분의 기후 연구는 적용 연구에 해당됩니다. 그 이유는 다소 큰 영향을받는 대규모 국가 연구 센터에서 수행되었거나 제 3 자 펀드에 의존하기 때문입니다. 연구 접근 방식에 관계없이 기후 변화는 특히 SCAR의 "지붕"아래에서 남극 특유의 연구에서 자금과 인원면에서 가장 큰 연구 단지입니다. 추가로 적용되는 생물학적 집중에는 천연 자원과 자연 보호가 포함되며 결국에는 기후 변화 문제와 관련됩니다. 기초 연구는 일반적으로 생물학적 구조 및 과정, 단일 종 및 벌크 매개 변수, 장기 및 단기 관찰, 새로운 생체 ​​분자 기술 및 실험에 대한 연구를 포함하여 다양한 주제를 포괄합니다. 남극 해양 생물 조사는 제한된 기간 (2005-2010) 동안 해양 연구 문제, 특히 생물 다양성, 분류법 및 유전 접근법을 포함한 체계 (Gutt et al., 2010; Kaiser et al., 2013; de Broyer et al. 2014) .
정치적, 사회적 요구를 수용하고 서식지에 대한 파괴적인 영향을 줄이기위한 본능적 인 아이디어는 그들을 보호하는 것입니다. 그러나 전지구 적 또는 다른 대규모 기후 변화는 보호 지역의 지정에 의해 남극 육지 및 해양 (및 다른) 서식지에 영향을 미칠 수 없다. 그럼에도 불구하고, 피난 지역의 보호와 추가적인 국부적 인 스트레스의 감소. 기후 변화를 겪고있는 지역의 어업이나 오염으로 직접 관리 가능한 영향을 감소시킬뿐만 아니라 기후 변화를 포함한 상승 효과 (부정적)를 감소시킬 수도있다 (Keppel et al., 2012).
의견 조사, 구조 및 결과.
(A) 더 많이 적용된 기후 관련 연구가 권고된다.
(B) 기후 변화에 따른 생태계 이해 개선 및 예측 개선 필요.
(C) 개발되어야 할 새로운 개념.
(D) 변경이 필요 없음.
응답자는 4 가지 옵션 중 최대 2 가지를 선택할 수 있습니다. 의견 설문 조사 전문은 전자 보충 자료, 온라인 자료 1 (ESM. pdf)을 참조하십시오.
메타 정보.
설문 조사는 2016 년 2 월 17 일에 릴리스되었으며 2016 년 5 월 13 일 LimeSurvey 2.05+ 소프트웨어를 사용하여 종료되었습니다. 남극 연구위원회 (SCAR)의 과학 연구 프로그램 남극 한계점 (Anctic Thresholds) - 생태계 복원력 및 적응 (AnT-ERA)의 메일 링리스트를 통해 약 510 명의 회원으로 구성되었으며 그 중 480 명이 생물 학자였다. 설문 조사는 남극 지역 사회의 생물 학자와 SCAR 참가자들에게 주로 사용되는 공개 AnT-ERA 웹 사이트 (SCAR : 2011 년 11 월 21 일에 액세스 한 SCAR : scar. org/srp/ant-era 서브 페이지)에도 광고되었습니다 다른 생물학적 및 비 생물학적 남극 연구 프로그램 (scar. org/srp/ant-era#CPW, 2016 년 11 월 21 일 접근)과 협력하여 AnT-ERA가 주최 한 바르셀로나 교차 프로그램 워크샵 AnT-ERA의 주된 초점은 남극의 생태 시간 계상에 대한 생물학적 과정, 특히 기후 변화와 관련이있는 것은 아니지만 특히 중요합니다. 설문 조사는 참여자들의 상대적으로 우수한 비 개인적 추적 성을 위해서만이 미디어를 통해서만 광고했습니다. 90 건의 답변이 접수되었으며, 그 중 21 건은 초기 경력자, 39 명은 중간 경력자, 28 명은 후기 경력자입니다. 참가자 중 63 명은 해양 생물 학자 였고 20 명은 육상 생물 학자였으며 5 명은 생물 학자 이외의 과학자들이었고 하나는 과학자가 아니었다. 참가자 중 52 명이 주로 응용 연구에 관여하는 기관에서 근무했으며 37 명은 주로 학술 연구를 수행했습니다. 대학이나 박물관에서. 응답자 67 명은 자신의 정체성을 밝혀서 설문 조사의 성실성을 높이고 더 간단한 분석을 허용했다. 대다수의 답변은 남극 과학에서 오랜 전통을 지닌 국가와 상대적으로 규모가 큰 국가 프로그램에서 나온 것이고, 20 %는 신흥 국가 또는 소규모 국가 남극 프로그램이있는 국가 출신이었다. 비 익명 응답 중 3 개만이이 논문의 저자와 같은 연구소에서 나왔습니다.
핵심 질문에 대한 답 (그림 1)
의견 조사의 답변의 상대 비율; 모든 답변 (위)과 답변은 "경력"단계, 자신이 전문화 된 "생태계"및 "고용주"(하단)에 대한 일반적인 연구 개념과 관련하여 응답자를 언급하는 클러스터로 나뉘어져 있습니다.
경력 단계 측면에서 초기 경력 과학자의 평균 이상의 비율로 투표 한 기후 관련 연구 적용이 더 많았으며 (옵션 A), 변경 필요 없음 (옵션 D)이 상대적으로 낮은 우선 순위를 가졌습니다. 후기 직업 과학자들은 반대 방향으로 반응하여 변경 필요 없음 시나리오 (옵션 D)에 대해 다수를 형성했습니다. 중간 경력자 과학자들은 전반적인 평균 반응을 대표했다. 대부분의 해답은 해양 과학자들로부터 왔으며 일반적인 추세를 따랐습니다. 13 명의 지상 전문가 중 누구도 개발할 소설 개념에 찬성표를 던지지 않았으며 (옵션 C), 적용된 기후 관련 연구가 더 많이 (옵션 A) 더 낮은 선호도를 보였습니다. 전반적인 응답. 제 3 자 지원 프로젝트 나 임무를 수행 한 기관에서 근무한 과학자들은 개발할 새로운 개념 (옵션 C)을 상대적으로 거의지지하지 않았으며, 더 많은 의견을 제시했습니다. 적용된 기후 관련 연구가 더 많이 추천되었습니다 (옵션 A). 변경 필요 없음 시나리오 (옵션 D). 대조적으로, 대학이나 박물관과 같은 독립적 기관의 과학자들은 개발 될 새로운 개념 (선택 사항 C)에 우선 순위를두고 투표했으며, 적용된 기후 관련 연구가 더 많이 채택 됨 (옵션 A)과 상대적으로 낮은 합의를 보았다.
토론 - 남극해와 남극의 기후 변화 연구의 미래 방향.
여기에서 우리는 과학자들의 의견을 토론하고 SCAR Horizon Scan의 첫 번째 기사, 특히 절벽의 남극 생활에서 실제 과학 질문에이 질문을 할당합니다. 이러한 지정은 인공적인 것인데, 그 이유는 질문이 오히려 근본적으로 그리고 현재의 접근으로부터 정말로 참신한 아이디어로의 변화를 표현하기 때문입니다. 그러나 연구자 그룹이 공동으로 가지고있는 의견을 파악하고, 세부 연구 결과를 극복하며, 향후 연구 방향을 위해 남극 과학 공동체의 최우선 과제를 정교 히 돕습니다.
더 많이 적용된 기후 관련 연구가 권장됩니다.
이 옵션을 제공하기위한 자극은 적어도 유럽에서 과학자들은 제 3 자 EU 기금에 대한 요구가 사회적 경제적 경로의 조사 및 경제적 조치의 조사를 포함하여 자연 또는 생태계 기반 솔루션의 개발에 우선 순위를 부여한다는 점을 인식하고 있습니다 뿐만 아니라 악기. 따라서 이러한 프로젝트에 적극적으로 참여하는 과학자들은 인류의 거대한 환경 또는 다른 문제를 해결하기위한 사명을 수행하는 실행 보조원이 될 것입니다. 그러한 해결책의 필요성은 정책 입안자에 의해 결정되며 과학계 외부의 세력에 의해 야기된다. 산업 또는 토지 이용 관행, 해양에서도 이것은 성공적 일 때 생물 학자들이 미래에 기여할 수있는 매우 가치있는 사회 사명이 될 수 있습니다. 그러나 과학자들은 부분적 독립성을 잃어 버리고 정치적 비전을 우선적으로지지한다. 조기 진로 과학자들이이 옵션에 대한 우선 순위를 제시 한 한 가지 이유는 단순히 그들의 기대 수명 때문입니다. 그들은 앞으로 수십 년의 문제를 경험할 가능성이 높고 과학계의 관심과 관련이없는 후기 직업인 과학자보다 기후 해결책을 더 강하게 필요로 할 것이다. 그러나이 옵션에 투표 한 모든 사람들은 남극해와 남극 대륙이 전 지구 적 기후 변화 환경 문제를 해결할 수 없다는 것을 알고 있어야합니다.
이론적으로 세계의 다른 지역에서 생겨나 고 남극 지역에 큰 영향을 미치는 기후 문제는 마진에서 양분이 낮은 높은 엽록소 지역을 가진 남 대양이 해양 시비를 통해 대기 중 이산화탄소를 배출하는 데 사용된다면 해결 될 수있다 (Smetacek et al. 2012). 그러나이 접근법은 논란의 여지가있다 (Chisholm 외 2001; Strong et al., 2009; Vaughan and Lenton 2011, McCormack 외 2016). 이산화탄소 감축이 이산화탄소 감축 량을 제공한다는 증거는 없으며 따라서 이산화탄소 감축 량을 크게 높여서 이산화탄소 배출량에 효율적으로 기여할 수 있습니다. 또한 원양 및 저서 생태계와 생태계 서비스에 대한 부정적인 영향 (CO 2 흡수 자체를 포함)이 가정되어야한다. 이것은 아직 이해되지 않았고 충분히 평가되지 않았기 때문에 권고가 내려지기 전에 더 많은 연구가 필요할 수도 있음을 시사한다. 또한, 60 °의 남쪽 지역은 남극 조약의 환경 보호에 관한 의정서 (마드리드 프로토콜, ats. aq/e/ep. htm)에 의해 인위적인 영향으로부터 보호됩니다. 금세기 중반 (2048) 마드리드 의정서 갱신을 논의하고 대규모 수정을위한 허가가 경제 및 정치적 압력 하에서 내려지면 남극 대륙과 남 대양의 엄격한 보호가 완화 되더라도 기후 변화는 돌이킬 수없는 것으로 간주되어야한다고 생각해야한다 (Solomon et al., 2009). 또한, 폐기물 및 기타 물질 및 국제 해사기구 (IMO) 및 생물 다양성 협약 (CBD)의 덤핑으로 인한 해양 오염 방지에 관한 세계적으로 유효한 런던 협약은 이산화탄소를 완화하기위한 대규모 작업이 현재 정당화되지 않았고 허용되어서는 안됩니다 (cbd. int/decisions/?m=COP-09&id=11659&lg=0, maritimeconnector / NewsDetails / 2203 / lang /.wshtml, ioccp. org, 모두 2016 년 11 월 21 일에 액세스) ). 남극 해양 환경을 인위적 영향으로부터 보호하기위한 직접적인 조치는 해양 보호 구역 (MPA)이다. 이러한 사례로는 최근 로스 바다에서 약 1.6km 2의 대규모 MPA와 빙붕 분해 영역의 보호 및 계획된 추가 MPA (예. 웨델 해에서. 그러한 행동은 우선적으로 상대적으로 넓은 지역에서 상업적 어업을 금지하는 한편, 추가적인 인위적 교란없이 기후 스트레스 하에서 종을위한 피난처 지역을 제공한다.
후기 경력자들이이 옵션에 대해 투표하지 않은 이유는 이러한 제약에 주목했기 때문이거나, 비전문가가 자신의 경력에 ​​대해 너무 많은 지침을 경험하여 일반적으로 성공하지 못하고 부분적으로 독립성을 선호했기 때문일 수 있습니다.
이 옵션의 상대적 우선 순위는 첫 번째 SCAR Horizon 스캔 질문에 직접 반영되지 않습니다. 이것은 해결해야 할 기후 문제의 확인이 주로 남극 생물 학자의 책임에 해당되지 않기 때문에 놀랄 일이 아니다. 첫 번째 SCAR Horizon Scan 센터의 다섯 가지 질문이 적용된 측면 (예 : 천연 자원의 사용, 기술 중심 주제 및 보전 조치를 포함하지만, 기후 상황에 국한되지는 않는다. 이러한 질문이 주로 기후 변화 완화 활동과 (기타) 제품 또는 기술 주도 연구를 목표로하지 않는 이유는 이러한 시도가보다 광범위한 분야를 필요로하기 때문입니다. 남극 지역에서 해결책을 찾을 수 없으므로 인류, 공정 공학 및 생명 공학 전문가는 적어도 다른 곳에서의 구현을 위해 남극에서 배워야합니다. 제 1 SCAR Horizon Scan에서 적용된 연구 측면의 낮은 표현은 아마도이 이니셔티브에서 후기 경력자 과학자의 우세로 인한 것일 수도 있습니다. 더 많은 적용을받는 고용주를 위해 일하는 과학자들은 그러한 연구 측면을 약간 회피 한 더 독립적 인 기관에서 일하는 과학자 들과는 대조적으로, 더 많이 적용된 기후 관련 연구가 권장되는 것에 약간 찬성했다. 이것은 과학자들이 익숙한 전문적인 환경에서 머물기를 선호하는 다소 보수적 인 정신을 보여줄 수 있습니다.
기후 변화에 따른 생태계 이해 개선 및 예측 개선 필요.
이 옵션의 배경은 (1) 남태평양과 남극의 선진 연구가 선박, 방송국, 항공기, 인공위성 및 이들 중 일부에서 배치 된 최신 장비와 같은 효율적인 연구 플랫폼을 사용하여 최근 수십 년 동안 특히 성공적으로되었다는 것이 었습니다 . 이 기간 동안 기후 변화 토론은 수많은 소규모 연구 활동과 대규모 연구 활동을 형성했습니다. (2) 우리의 기본 지식에 대한 비판적 견해는 위에 언급 된 성공에 기초하여 가치있는 단일 결과의 다양성을 제공합니다. 그러나 체계적 접근과 생태 학적 예측을 포함하여 기후 변화에 대한 남극 생태계의 반응에 대한 "커다란"질문에 대한 대답은 여전히 ​​드물다. 특정 환경, 부분적 고립 및 어려운 접근 가능성은 기후 변화의 영향에 대한 중요한 연구 결과가 세계의 다른 일부 지역보다 덜 풍부하고 덜 명확하므로 남극에서 특히 필요한 이유 일 수 있습니다.
이 옵션에 대한 후기 경력자의 선호도는 다른 응답자에 비해 약간 낮았다. 한편으로, 적용된 기후 관련 연구의 선호도가 낮은 선호도와 결합 된이 결과는 기후 변화 생물학 연구의 성공적인 성공적인 개발에 필요한 변경 없음 옵션이 충분하다고 여겨지는 의견에 근거 할 수있다. 반면에, 특히 제 3 자 지원 프로젝트가 계획 될 때, 영구적으로 새로운 접근 방식, 아이디어 및 솔루션을 개발해야하는 부담이 커지고 있습니다. 그러나 이러한 혁신의 빈도에는 한계가 있습니다.
이 옵션에 대한 육상 전문가의 평균 선호도가 평균 이하인 해양 전문가 비율과 비교할 때 토지에 미치는 영향을보다 잘 파악할 수 있기 때문일 수 있습니다. 남극 녹화. 거대하고 어둡고 깊은 바다에서의 삶의 복잡성은 "무수한"종, 생태적 역할은 물론 그들이 제공하는 재화와 서비스를 다루는 데 어려움을 겪을 수 있습니다.
제 1 차 SCAR Horizon Scan 클러스터의 25 개 질문 중 대다수는 상세한 아이디어가 참으로 새로운 것인지에 관계없이 절벽 위의 남극의 삶은 직접 또는 간접적으로 기후 변화의 문제와 관련이 있습니다. 이 질문 중 일부는 더 나은 생태계 이해에 중점을두고 "기후 변화가 남극 생태계에 영향을 미치고 예측을 개선하는 방법에 대한 지식을 향상시킬 수 있습니다"(의견 설문 조사의 설문지에서).
SCAR Horizon Scan의 첫 번째 질문은 주로 학문적 인 과학적 관심을 가장 많이 띄는 반면 몇 가지 다른 질문은 이해 관계자의 요구 사항에 직접적으로 동의 할 수 있습니다. 후자에 대한 좋은 예는 상기 언급되지 않은 "큰"문제 중 하나로 간주 될 수있는 탄소 흡수원으로서의 남 대양에 대한 질문이다. 더 단순하지만 대답하기 어려운 질문을 추가 할 수 있습니다. 예 : SO autotrophs에 의해 얼마나 많은 양의 산소가 생성되며, 지속적인 기후 변화에서 어떻게 변할 것인가? 저수준의 거대 생물과 미생물이 다양한 수심에서 영양염을 재활용하거나 묻어 둘 수있는 능력은 무엇이며 기후 변화에 따른 전세계 해양 생태계의 결과는 무엇인가? 남극과 남해의 생물 다양성은 심해를 포함한 지구 생물 다양성에 얼마나 기여 하는가 (Brandt 외 2014), 기후 변화에 따라 이러한 비율이 어떻게 변할 것인가? 그러한 질문의 다양성은 기후 변화와 더 나은 예측 하에서의 더 나은 시스템 이해를위한 투표의 우세와 함께 과학자들이 높은 수준의 과학적 질서에 사회적으로 관련된 질문에 답하기 위해 기여하려는 야망을 강조한다.
개발할 새로운 개념.
이 옵션은 전반적으로 가장 낮은이자를 받았으며 전체 응답의 13 % 만 받았습니다. 적용된 임무를 가진 기관에서 일하는 초기 직업 과학자, 지상 전문가 및 과학자의 지원은 훨씬 낮았습니다. 이것에 대한 한 가지 이유는 조기 진로 과학자들이 과학 발전의 매혹적이지만 불확실한 갱신에 많은 기여를하지 않았음에도 불구하고 자신의 진로 계획에 확실성을 부여하는 우선 순위로서 지침을 따라 노력하고 있다는 것입니다. 이러한 낮은 지원은 또한 정직한 자기 평가를 반영 할 수 있으며, 특히 경력 초기에 과학자 수가 적어서 참신한 개념을 개발할 수있는 충분한 창의력을 가지고 있음을 나타냅니다. It is beyond the scope of this study to assess how many scientists with particularly creative minds are needed to maintain a perfect science system to the benefit of a prosperous societal development, and how much practical work is to be done by busy, executing researchers. However, it should not be overlooked that, against the result of this opinion survey in the “academic world”, the most innovative ideas are usually ascribed to the younger generation. A general indolence to develop novel ideas and concepts would mean an unfortunate standstill in science. The low support could also be affected by an assumed higher probability to get a job in a scientific field when doing more prudent research. In this regard, it is generally well accepted and established that some public employers and funding agencies are not forward-looking enough to provide employment for research that is willing to take risks and address “crazy” questions. Researchers of relatively independent institutions were more open to novel concepts needed maybe because they are more used to thinking in different directions, without the pressure to demonstrate relevance to any societal group already at the start of projects. A third reason why the support for this option was low might be the same as for the partial below-average acceptance of option B ( Better ecosystem understanding under climate change and improved predictions needed) . Scientists already use all their creativity to focus on new or so far unanswered climate-related questions, especially for fund-raising purposes. If in this respect a realistic optimum is reached, there is no need and no justification for an additional stimulus to develop even more novel ideas. However, it must also be noted that the question of the opinion survey did not aim to ask for new questions but just whether (permanent) development and brainstorming about new ideas is necessary.
Aiming at actionable requirements for research supporting technologies, logistics and infrastructure, the output of the 1st SCAR Horizon Scan in combination with the Antarctic Road Map Challenge (Kennicutt et al. 2016 ) confirms the conclusion that scientists are already quite active in brainstorming and development of novel scientific questions (Xavier et al. 2016 ). Such questions can be roughly classified into (a) new applied aspects, e. g. on new contaminants or conservation issues, (b) fundamental science, e. g. on various topics ranging from very small to very large spatial scales, e. g. from molecules to ecosystem approaches, (c) background knowledge for further climate-change-related research, e. g. the need of up - and downscaling for a better system understanding and for obtaining representative results and conclusions. Novel scientific approaches and new technologies can be developed hand in hand (Brandt et al. 2016 ).
The high abundance of 1st SCAR Horizon Scan themes which could be attributed to Novel concepts to be developed is in contrast to the low support for the development of novel ideas in the opinion survey. The number of such novel concepts was even higher among the originally submitted questions of the 1st SCAR Horizon Scan . However, all final questions had to be democratically supported by scientists of all disciplines and exceptional and “crazy” questions (in the sense of novelty) therefore had only a reduced chance of general acceptance.
No changes necessary.
The difference in the representation of this option between early - and late-career scientists is most obvious. This is not surprising, because seniors are responsible for at least part of the research strategies in the past. Thus, it is evident that they might consider past developments as sufficient and good enough to be continued without major changes. However, such an opinion might only reflect the state and developments within the scientific community and does not consider significant impacts from outside, like the Paris Agreement . It can be expected that this unambiguous and internationally accepted statement on the existence and impact of anthropogenic global change will affect the opinion and decisions of taxpayers, politicians, funding agencies and eventually with a delay also of scientists. It is not a surprise that most scientists do not prefer a business as usual scenario as a consequence of the COP21 and its results. It was also foreseeable that early career scientists, assumed to be more dynamic on average, do not favour a strict long-term consistency in research priorities. However, the possible reasons for a shift towards more applied, to the disadvantage of more independent research, are outlined above. Another reason for the nevertheless, notable agreement with this No changes necessary option especially among late-career scientists could be the same as for the generally low agreement with the need for novel ideas—that a permanent search for novel ideas is presently already a feasible maximum. This argument is supported by the pressure within fund-raising processes and the development of research programmes, which permanently demand novel approaches, independently of whether this is feasible in monthly to yearly intervals or not.
Logic would suggest that there are no associations of any novel questions to this “business as usual” option. However, since the output of brainstorming events such as the 1st SCAR Horizon Scan did not yield discrete and independent clusters but rather represent a gradient, few “novel” questions could be associated with this No changes necessary option. The authors and the editors of Nature journal selected from the Antarctic Life on the Precipice biology cluster the question on the adaptation of Antarctic organisms to the polar-specific conditions as almost the only biological question other than ones dealing with nature conservation issues. This theme has a long and successful tradition. It has formerly been approached using conservative physiological and biomolecular methods. However, extraordinarily fast-developing technological advances keep this adaptation theme fascinating (Verde et al. 2016 ). Thus, some detailed questions aiming at polar adaptation could be associated with the No changes necessary option. Another reason why this scientific issue is still very attractive and challenging in the Antarctic community might be that the pace of applications of this perpetually advancing technology is not as fast in Antarctic studies as for other ecosystems or habitats. Also, the implementation of results from some existing modern biomolecular techniques (e. g. genomics) in ecosystem-level models is generally still very challenging (Gutt et al. 2012 ). Since such ideas already exist no true changes are necessary, although increased research networking would be beneficial.
Not only method-driven approaches, but research for a better understanding of the Southern Ocean ecosystem is already successfully underway. This can therefore not be considered as really new, but reasonable. Comparative studies between the deep-sea (Brandt et al. 2014 ) and shelf ecosystems or polar comparisons are especially useful, but remain very rare. A comprehensive ecological understanding of Antarctic ecosystems will eventually be gained not only through the persistence of long-term questions, but also by the development of new field methods, better computer-based concepts and cross-disciplinary cooperation, simply more resources or a change in research priorities.
Conclusion and recommendations.
It can be assumed that the urgency with which stakeholders need further evidence for anthropogenic climate-change processes will decrease after the Paris Agreement , while questions on how to mitigate effects of climate change will become more pressing. However, politicians not only are in charge of plans how to reduce greenhouse gas emissions and temperature increases, but must also ensure the success of the implementation of the Paris Agreement . Even if the atmospheric temperature and its increase will be the major parameters to be measured, an evaluation of biosphere responses will be even more important. The latter provides ecological goods and services, including climate feedback effects, and directly shapes the human well-being.
Also, the interest of the general public, of communities under specific climate stress and of NGOs in the success of the COP21 will continue (Boucher et al. 2016 ). While the past focus was to detect any changes that provide evidence for climate change and its impact, it now becomes more important to observe how the changes develop in the next decades, e. g. whether amplification, a linear increase, buffering or general weakening happens (Constable et al. 2014 ). Scientists can meet such requirements if they continue to observe phenomena, for which baselines exist in the Antarctic and Southern Ocean. New analytical methods and observations must be able to detect long-term changes in a number of significant processes and correlative techniques should separate background noise from true climate-change impacts. This can refer to all levels of biological organisation such as biodiversity and community patterns, biological productivity, physiological plasticity and thresholds. Phenomena, which are representative for either a larger area or a larger component of the ecosystem, should have the highest priority. Examples could be repeated large-scale surveys on krill and fish in areas where their stocks are largest or dynamics of benthic suspension feeders in areas from which data already exist, or selected transects of Continuous Plankton Recorder operation. In addition to the nationally and internationally funded research projects, initiatives under the roof of SCAR stimulate the communication on and coordination of such approaches embedded in different research directions. There is no internationally and topically wider community than SCAR representing Antarctic-specific research. Specifically, its Scientific Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation (AnT-ERA) is in charge of stimulating research and collaboration on a broad variety of climate-driven and other biological processes and contributes considerably to a permanent process of brainstorming. Most, if not all, of these studies must be carried out in close cooperation with physicists. The international initiative Southern Ocean Observing System (SOOS, soos. aq/ ; accessed 21 November 2016), endorsed by SCAR and the Scientific Committee on Oceanic Research (SCOR), could be the best suited platform for such an interdisciplinary approach. Another institution that brings experts on polar ecosystems from different disciplines together is the Gordon Research Conferences on Polar Marine Science , which has a slightly different scope than SCAR. An intellectual exchange with the “Arctic equivalent” to SCAR, the International Arctic Science Committee (IASC) is a permanent challenge for scientists working in the polar regions.
Analyses in a wider scientific and societal context can only be carried out by consortia comprising natural and social scientists as well as engineers and economists (Knapp et al. 2017 ). New cross-disciplinary academic study courses and even degrees would foster the efficiency of such trans-disciplinary approaches. They would foster the cooperation between specific specialists based on a common sense and a well-developed communication.
Independently of the actual pressure to head for new directions in applied climate-change research, scientists and students might be reminded that they traditionally contributed to develop new research issues and strategies in any larger context. They should continue to identify and accept scientific challenges, independently of actual and temporary problems.
감사 인사.
Thanks are due to the respondents of the opinion survey. Even though it represents personal and independent opinions of the author, this paper is a product of the Scientific Committee on Antarctic Research (SCAR) biology research programme Antarctic Thresholds-Ecosystem Resilience and Adaptation (AnT-ERA).
Supplementary material.
참조.
저작권 정보.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( creativecommons. org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
저자 및 제휴사.
Julian Gutt 1 author 1. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven Germany.
이 기사에 관하여.
개인화 된 권장 사항.
기사를 인용하십시오.
.RIS 논문 참조 관리자 RefWorks Zotero.
.BIB BibTeX JabRef Mendeley.
기사 공유.
기사를 인용하십시오.
.RIS 논문 참조 관리자 RefWorks Zotero.
.BIB BibTeX JabRef Mendeley.
기사 공유.
목차.
손끝에서 천만 가지 이상의 과학적 문서를 제공합니다.
Switch Edition.
&부; 2017 Springer International Publishing AG. 스프링거 자연의 일부입니다.

Ecosystem services of the Southern Ocean: trade-offs in decision-making.
Grant, Susie M. ; Hill, Simeon L. ; Trathan, Philip N. ; Murphy, Eugene J. . 2013 Ecosystem services of the Southern Ocean: trade-offs in decision-making. Antarctic Science , 25 (5). 603-617. doi. org/10.1017/S0954102013000308.
Before downloading, please read NORA policies.
_ANS_S0954102013000308a. pdf - Published Version.
Abstract/Summary.
Ecosystem services are the benefits that mankind obtains from natural ecosystems. Here we identify the key services provided by the Southern Ocean. These include provisioning of fishery products, nutrient cycling, climate regulation and the maintenance of biodiversity, with associated cultural and aesthetic benefits. Potential catch limits for Antarctic krill (Euphausia superba Dana) alone are equivalent to 11% of current global marine fisheries landings. We also examine the extent to which decision-making within the Antarctic Treaty System (ATS) considers trade-offs between ecosystem services, using the management of the Antarctic krill fishery as a case study. Management of this fishery considers a three-way trade-off between fisheries performance, the status of the krill stock and that of predator populations. However, there is a paucity of information on how well these components represent other ecosystem services that might be degraded as a result of fishing. There is also a lack of information on how beneficiaries value these ecosystem services. A formal ecosystem assessment would help to address these knowledge gaps. It could also help to harmonize decision-making across the ATS and promote global recognition of Southern Ocean ecosystem services by providing a standard inventory of the relevant ecosystem services and their value to beneficiaries.
Actions (login required)
Document Downloads.
Downloads for past 30 days.
Downloads per month over past year.
© NERC Open Research Archive, powered by EPrints 3.4.

Ecosystem services of the Southern Ocean: trade-offs in decision-making.
인용문.
BioEntities.
관련 기사.
외부 링크.
Ecosystem services of the Southern Ocean: trade-offs in decision-making.
Ecosystem services are the benefits that mankind obtains from natural ecosystems. Here we identify the key services provided by the Southern Ocean. These include provisioning of fishery products, nutrient cycling, climate regulation and the maintenance of biodiversity, with associated cultural and aesthetic benefits. Potential catch limits for Antarctic krill ( Euphausia superba Dana) alone are equivalent to 11% of current global marine fisheries landings. We also examine the extent to which decision-making within the Antarctic Treaty System (ATS) considers trade-offs between ecosystem services, using the management of the Antarctic krill fishery as a case study. Management of this fishery considers a three-way trade-off between fisheries performance, the status of the krill stock and that of predator populations. However, there is a paucity of information on how well these components represent other ecosystem services that might be degraded as a result of fishing. There is also a lack of information on how beneficiaries value these ecosystem services. A formal ecosystem assessment would help to address these knowledge gaps. It could also help to harmonize decision-making across the ATS and promote global recognition of Southern Ocean ecosystem services by providing a standard inventory of the relevant ecosystem services and their value to beneficiaries.
소개.
“Ecosystem services” are the benefits that mankind obtains from natural ecosystems (Millennium Ecosystem Assessment 2005, Daily et al. 2009) including food, fresh water and the maintenance of an equable climate. Human activities put pressure on natural systems, and obtaining one benefit (such as fish for food) from an ecosystem may impact its ability to provide other benefits (such as supporting biodiversity). Organizations charged with managing human activities that impact ecosystems must therefore make trade-offs between the different benefits that ecosystems provide (McLeod & Leslie 2009, Link 2010, Watters et al . in press).
Recent “ecosystem assessments” have attempted to collate information on the character, status, distribution and value of ecosystem services at global or regional scales (IPBES 2012). The objective of collating such information is to clarify how ecosystems, the achievement of social and economic goals and the intrinsic value of nature are interconnected (Ash et al. 2010). Such assessments attempt to translate the complexity of nature into functions that can be more readily understood by decision-makers and non-specialists. Their authors suggest that this increases the transparency of trade-offs associated with decisions that may impact ecosystems (Carpenter et al. 2006, Beaumont et al. 2007, Fisher et al. 2009, UK NEA 2011).
The continent of Antarctica and the surrounding Southern Ocean have, to date, been under-represented in global ecosystem assessments (e. g. Millennium Ecosystem Assessment 2005, UNEP 2010, 2012) and have not been the subject of any detailed regional assessment. This continent and ocean (which we subsequently refer to as the Antarctic) cover 9.7% of the Earth's surface area and play significant roles in the functioning of the Earth system (Lumpkin & Speer 2007, Mayewski et al. 2009). Their under-representation in ecosystem assessments potentially limits the information available for decision-making about regional and global activities that impact Antarctic ecosystems. It could also lead to underestimates of the consequences of change in Antarctic ecosystems and the global significance of the services they provide.
The governance system for the Antarctic comprises a set of international agreements known as the Antarctic Treaty System (ATS). These treaties imply that the management of activities that impact ecosystems should consider the associated trade-offs. For example, the Protocol on Environmental Protection (1991) recognized “the intrinsic value of Antarctica, including its wilderness and aesthetic values and its value as an area for the conduct of scientific research, in particular research essential to understanding the global environment” (ats. aq/documents/recatt/Att006_e. pdf, accessed April 2013). Decisions on the conduct of human activities, including scientific research, must therefore consider potential impacts on environmental, aesthetic and wilderness values. The Convention on the Conservation of Antarctic Marine Living Resources underpins the management of fishing activities in the Southern Ocean. The Convention entered into force in 1982, and established the Commission for the Conservation of Antarctic Marine Living Resources as its decision-making body. The acronym ‘CCAMLR’ is often used to refer to both the Convention and the Commission. In this paper, we use ‘CCAMLR’ to refer to the Commission and ‘the Convention’ to refer to the legal instrument. The Convention aims to ensure the “rational use” of marine living resources subject to “principles of conservation” ( Fig. 1 ) including the maintenance of harvested stocks and of ecological relationships between harvested stocks and other species, the recovery of previously depleted stocks, and the prevention of irreversible change (ccamlr. org/en/document/publications/convention-conservation-antarctic-marine-living-resources, accessed April 2013). Decisions that comply with the Convention must therefore consider the trade-offs between the current benefit of catches, the benefit of future catches from a healthy stock, and the more general benefits of a healthy ecosystem.
The purpose of the current paper is to review existing knowledge of Southern Ocean ecosystem services and the way this knowledge is currently used in decision-making. We collate available information on the identity, distribution, beneficiaries and global significance of Antarctic marine ecosystem services. We use the management of the main Southern Ocean fishery, which harvests Antarctic krill, Euphausia superba Dana, as a case study to explore the extent to which regional decision-making currently uses the type of information that formal ecosystem assessments generate. A full assessment of the status, trends and value of Southern Ocean ecosystem services is beyond the scope of this study, but we discuss the further work required and the potential benefits of conducting a formal ecosystem assessment. While we acknowledge that these objectives are also relevant to the terrestrial Antarctic, we limit our consideration to the marine ecosystem services of the Southern Ocean. For the purposes of this study, we define the Southern Ocean as the area covered by the Convention (ccamlr. org/en/organisation/convention-area, accessed April 2013). The northern boundary of this area approximates to the position of the Antarctic Polar Front, which is an important ecological boundary between neighbouring oceans. This front is where cold polar surface waters sink beneath temperate surface waters. It is generally located between c. 50°S and 60°S (Moore et al. 1997); the higher latitude being the northern boundary of all other ATS agreements (ats. aq/imagenes/info/antarctica_e. pdf, accessed April 2013).
The following two sections provide brief introductions to ecosystem assessment and direct human interactions with the Southern Ocean ecosystem. Tables I and ​ andII II present key information about Southern Ocean ecosystem services, and the remaining sections consider the existing use of information on ecosystem services in the management of the Antarctic krill fishery in the Scotia Sea and southern Drake Passage. This forms the basis for our discussion of how an ecosystem assessment might aid CCAMLR's decision-making processes.
Ecosystem assessment.
Ecosystem assessments aim to comprehensively characterize the status and trends of relevant ecosystems, the services they provide, the drivers of change, and the potential consequences of such change (Carpenter et al. 2006, Ash et al. 2010). This includes identifying how ecosystem services affect human well-being, who benefits, and where these beneficiaries are located. It can include identifying the specific value of ecosystem services to their beneficiaries (TEEB 2010). An ecosystem assessment adds value to existing information by clarifying how ecosystems, human well-being and the intrinsic value of nature are interconnected (UK NEA 2011). The practical purpose of these assessments is to provide information that can help decision-makers to better understand how their decisions might change specific ecosystem services. This theoretically equips decision-makers to choose policies that sustain the appropriate suite of services (Ash et al. 2010).
The Millennium Ecosystem Assessment (MA) was a landmark example of a global ecosystem assessment (Millennium Ecosystem Assessment 2005). Its objective was to “assess the consequences of ecosystem change for human well-being”, and it established a framework which has formed the basis for a number of subsequent global and regional ecosystem assessments (e. g. CAFF 2010, UK NEA 2011, UNEP 2012). The MA recognized four categories of ecosystem services: provisioning (e. g. food, freshwater); regulating (e. g. climate regulation, water purification); cultural (e. g. aesthetic benefits and recreation); and supporting (e. g. nutrient cycling and primary production). These categories notably exclude the roles played by polar icecaps in storing water that would otherwise increase sea levels, and by sea ice in holding back continental ice and increasing the Earth's albedo. They also exclude some naturally occurring resources such as minerals and hydrocarbons.
The MA definition of ecosystem services includes benefits that are directly perceived and used by people (such as food and water) and those that are not (such as storm regulation by wetlands) (Costanza 2008). Direct-use benefits of ecosystem services may be consumptive (e. g. the consumption of wild caught fish), or non-consumptive (e. g. the enjoyment of those fish by scuba divers) (Saunders et al. 2010). Non-use benefits may be derived, for example, from the knowledge that a resource or service exists or is being maintained (Ledoux & Turner 2002, Saunders et al. 2010). Benefits may be enjoyed at the location of a particular ecosystem service (e. g. local subsistence fishing) or at a great distance from it (e. g. large-scale commercial fishing by far seas fleets with global markets).
By definition, ecosystem services have value to their beneficiaries. Ecosystem assessments aim to identify the relative value of each ecosystem service based on various measures. In the case of consumptive use, it might be possible to measure value in economic terms, but it is also important to consider other types of value (Costanza et al. 1997). Various authors have described non-use benefits in terms of existence or presence value, altruistic value (knowledge of benefits being used by the current generation), and bequest value (knowledge of benefits being used by future generations) (Gilpin 2000, Chee et al. 2004, Saunders et al. 2010). The preservation of a resource or service for future use, or the avoidance of irreversible decisions until further information is available (Millennium Ecosystem Assessment 2005) is sometimes considered as a use value in itself (Saunders et al. 2010). However, it may be categorised separately as an unknown use, including a ‘quasi-option value’ where future use assumes the availability of increased knowledge or technology (Ledoux & Turner 2002, Chee et al . 2004).
The objective of ecosystem assessment to provide a comparison between ecosystem services has led to attempts to express these different values in standardized, and often monetary, terms. The monetary value of an ecosystem service is arguably equivalent to the cost of replacing that service or finding another means of gaining similar benefits (Ledoux & Turner 2002). In some cases, particularly for those services which constitute the Earth's life support systems (e. g. climate regulation) this value is unlimited, because the service would be irreplaceable if lost completely.
The Total Economic Value (TEV) framework is increasingly used to assess the value of ecosystem services by combining both monetary and non-monetary aspects of overall value (Ledoux & Turner 2002). Figure 2 sets out a simple TEV framework adapted from previous studies (Ledoux & Turner 2002, Chee et al . 2004, Saunders et al. 2010). The loss of ‘natural capital’ such as forests or fish stocks is not included in traditional economic accounting models such as Gross Domestic Product (GDP) (Dasgupta 2010). In some cases, the exploitation of natural resources might result in a positive growth in GDP, when the degradation or unsustainable use of those resources has in fact reduced natural capital. Valuation of ecosystem services provides information that might help to inform policy decisions that reduce such loss or degradation of natural capital (Costanza et al. 1997, Ledoux & Turner 2002).
Human uses of the Southern Ocean.
The Southern Ocean is the only ocean that does not border a permanently inhabited landmass and, consequently, it was unknown and unexploited until the late 1700s. The economic importance of its ecological resources grew rapidly following Captain Cook's discovery of abundant fur seals at South Georgia in 1775. The Southern Ocean became the world's main source of seal products in the 1800s and whale products in the 1900s (Bonner 1984, Headland 1992). Populations of fur seals were reduced almost to extinction by the early 19th century. Attention then shifted to elephant seals and southern right whales. By the first half of the 20th century, these stocks had also declined and improved technology allowed offshore hunting of other baleen whales and sperm whales to become established. Whaling ceased in the 1960s when it was no longer economically viable. Finfish and then Antarctic krill became the major focus for exploitation, which continues until the present-day. Historical harvesting operations and catch sizes are mainly well documented (e. g. Laws 1953, Kock 1992, CCAMLR 2012a, Hill 2013a, fig 14.5), although illegal, unregulated and unreported (IUU) fishing has occurred, most recently for high-value toothfish (Österblom & Bodin 2012). The extent and scale of this living resource extraction, and the fact that some whale and finfish stocks remain depleted (Bonner 1984, Kock 1992) demonstrates that the Southern Ocean is far from being a pristine wilderness as it is sometimes characterized.
The hostile and remote nature of the Southern Ocean, and the lack of a permanent human population have constrained direct use of its ecosystem services. Nevertheless, marine harvesting, science and tourism all directly impact the Antarctic environment (Clarke & Harris 2003, Tin et al. 2009). Scientific research and its associated logistic and support requirements have been a major focus of human activities in Antarctica and the Southern Ocean since the early 20th century. Up to 6000 scientific and support personnel are stationed in and around Antarctica at the peak of the summer season (Clarke & Harris 2003), and the Antarctic Treaty aims to maintain a high level of protection for the Antarctic environment as a scientific resource. The iconic wildlife, unique seascapes and coastlines, and relative isolation are all important factors in attracting recreational visitors. Antarctic tourism did not become established until the 1970s, and although it has expanded and diversified significantly during the last 40 years the number of visitors remains relatively low (around 35 000 each year; iaato. org/tourism-statistics, accessed April 2013).
Ecosystem services provided by the Southern Ocean.
Using the four categories identified by the MA, we have identified and described the ecosystem services provided by the Southern Ocean and the ecosystem components corresponding to the provision of these services ( Table I ). Of the 24 ecosystem services examined by the MA we suggest that 12 have direct relevance in the Southern Ocean. Others are relevant only to terrestrial habitats or where there is a resident human population. Table I also lists the current beneficiaries of each identified ecosystem service and the spatial distribution of these services where applicable. Species that are particularly important to the provision of ecosystem services include harvested species such as Antarctic krill, toothfish, and other fish species; iconic or flagship species (Zacharias & Roff 2001) such as penguins, whales, seals and albatrosses; and phytoplankton, zooplankton, and macro-zooplankton species which play key roles in primary production and nutrient cycling. There are potential benefits from services which are as yet unknown in the Southern Ocean. Endemism is high in many marine taxa (Arntz et al. 1997) suggesting the potential for products that cannot be sourced elsewhere. A few genetic and biochemical materials have been patented for use in pharmaceutical or industrial products but the potential of such resources has yet to be fulfilled (Jabour-Green & Nicol 2003). Other services such as the provision of freshwater may not be viable or utilized at present, but remain potentially important for the future if there are changes to global supply and demand.
Ecosystem services provided by the Southern Ocean have few direct, local beneficiaries. The provisioning services support consumption elsewhere. For example, markets for toothfish and Antarctic krill products are predominantly in northern hemisphere nations in East Asia, North America, and Europe (Catarci 2004, Nicol et al. 2012). Regulating and supporting services such as climate regulation, ocean circulation and nutrient cycling provide benefits to human populations globally.
Marine ecosystem services may occur within well-defined locations (e. g. the spawning grounds of a particular fish species which support a provisioning service), or across much larger and spatially less distinct areas (e. g. sequestration of CO 2 across the entire Southern Ocean). There is some potential for spatially explicit mapping of ecosystem services in the Southern Ocean, for example to illustrate the spatial dimension of catch value (UK NEA 2011). Information is also available on tourist landing sites (iaato. org/tourism-statistics) and ship traffic (Lynch et al. 2010). Mapping of regulating and supporting services may be more difficult to achieve, although datasets such as sea surface chlorophyll concentrations (e. g. oceancolor. gsfc. nasa. gov) may serve as useful proxies.
Table II presents some simple estimates of the comparative value of the Antarctic krill stock as an illustration of the value of Southern Ocean ecosystem services. The Antarctic krill stock in the Scotia Sea and southern Drake Passage is managed with an interim catch limit but there is also a higher potential limit, known as the “precautionary catch limit” (CCAMLR 2012b). These two catch limits are respectively equivalent to 0.8% and 7.1% of global marine capture fisheries production in 2011 (FAO 2012) with first sale values of about US$ 824 × 10 6 yr -1 and US$ 7.4 × 10 9 yr -1 . The comparable first sale value of the global fish catch is c. US$ 85 × 10 9 yr -1 (Pikitch et al. 2012). The current market for krill oil alone is c. US$ 82 × 10 6 yr -1 (Hill 2013a). These economic values should be considered alongside the value of other ecosystem services provided by the Antarctic krill stock. Pikitch et al. (2012) estimated that the contribution to predator production made by Antarctic krill is higher than that of any comparable species in the world's oceans. Other types of value based on the components of TEV ( Fig. 2 ) might include option, existence, or bequest value. Investment in research and conservation gives some indication of the importance society currently attaches to ecological resources. The coverage of closed or protected areas which limit fishery access, for example at the South Orkney Islands (CCAMLR 2012c) and South Georgia (sgisland. gs/download/MPA/MPA%20Plan%20v1-1.01%20Feb%2027_12.pdf), is a non-monetary indication of conservation investment. However, the cost of research and protection is likely to be much lower than the hypothetical replacement value.
Existing use of information about ecosystem services in the ATS.
Ecosystem assessments aim to characterize ecosystem services in terms of their identity and status. This status might be assessed relative to reference points defining desirable states. Ecosystem assessments also attempt to identify the beneficiaries of ecosystem services and to evaluate potential drivers and consequences of future ecosystem change. This is intended to facilitate decision-making based on trade-offs between ecosystem services. This section uses the Antarctic krill fishery in the Scotia Sea and southern Drake Passage as a case study to identify the extent to which management processes consider trade-offs and use the types of information that are collated in ecosystem assessments.
Overview of decision making within CCAMLR.
The instruments of the ATS govern existing and potential human activities in the Southern Ocean, although these instruments are legally binding only on signatory nations. The Protocol on Environmental Protection prohibits mineral exploitation south of 60°S and specifies the conduct of scientific, logistic and tourist operations. CCAMLR manages fishing activities in the wider Southern Ocean ecosystem. A total of 8% of this area falls under the jurisdiction of national governments (including the marine areas around Heard Island and McDonald Island, Iles Kerguelen and Iles Crozet, the Prince Edward Islands, South Georgia and the South Sandwich Islands), some of which apply CCAMLR management measures.
CCAMLR manages fishing and related activities by implementing regulations known as Conservation Measures. Commissioners are representatives of national governments. CCAMLR is advised by a Scientific Committee which, in turn, is advised by a number of scientific working groups. Decision-making at each of these levels is by consensus (Hill 2013a, fig 14.4).
The Antarctic krill fishery in the Scotia Sea and southern Drake Passage accounted for 91% by mass of the total Southern Ocean catch in the 2010–11 fishing season (CCAMLR 2012a). There are a number of reviews that describe the development of CCAMLR's management approach for this fishery (Constable et al. 2000, Miller & Agnew 2000, Hill 2013a), which we also summarize here.
The Convention's principles of conservation (CCAMLR 1982) were an early articulation of the goals of Ecosystem Based Management. Ecosystem Based Management takes account of trade-offs between ecosystem services, and has the goals of maintaining the ecosystem productivity, health and resilience that underpins the provision of ecosystem services (McLeod & Leslie 2009). Management of Antarctic krill fisheries has generally focused on the three-way trade-off between the performance of the fishery, the status of the krill stock, and the status of selected krill predators. In this trade-off, the status of krill predators is used as a proxy for the health and resilience of the wider ecosystem ( Fig. 1 ), although CCAMLR has also considered other impacts of the fishery, such as larval fish bycatch (Agnew et al. 2010).
The Antarctic krill harvest from the Scotia Sea and southern Drake Passage has been capped at 620 000 t yr -1 since CCAMLR first began to regulate the fishery in 1991. This interim catch limit is less than the “precautionary catch limit” (currently 5.61 × 10 6 t yr -1 ) which has been updated a number of times in response to revised estimates of Antarctic krill biomass (e. g. Trathan et al. 1995, Hewitt et al. 2004a, SC-CAMLR 2010). The “precautionary catch limit” defines the potential maximum harvest when the management approach is sufficiently developed to allow the interim limit to be removed.
CCAMLR's scientific working groups have used the three-way trade-off to develop and evaluate management approaches that address two key questions: what is the appropriate overall catch limit, and how should this be spatially distributed to minimize local depletion of krill and its predators? The first question led to a set of decision rules which CCAMLR established in the early 1990s to identify the “precautionary catch limit” (SC-CAMLR 1994). These decision rules were formulated for use with simulation models and an estimate of the initial biomass of Antarctic krill, which is assumed to represent the biomass prior to any impacts of fishing. One rule allows for the simulated Antarctic krill stock to be depleted to 75% of its initial biomass. This compares with the maximum sustainable yield reference point which is widely used in other fisheries and allows depletion to around 60% (Smith et al. 2011). Thus the decision rule reserves a proportion of Antarctic krill production for its predators. Smith et al. (2011) suggested that depletion to 75% of initial biomass represents a reasonable trade-off between the benefits of harvesting and ecosystem health. Another rule constrains the risk of the simulated krill population falling to low levels likely to impact productivity.
Work is ongoing within CCAMLR's scientific working groups to address the second question. These groups have identified ecologically-based spatial subdivisions of the fishery (Hewitt et al. 2004b) and assessed the potential consequences of different spatial fishing patterns (Plagányi & Butterworth 2012, Hill 2013b, Watters et al . in press). The krill biomass in any area varies naturally over time (Brierley et al. 2002, Atkinson et al. 2004). The patterns of variability are also likely to change in response to climate change and fishing (Everson et al. 1992). It might therefore be appropriate to vary area-specific catch limits, or other activities, such as monitoring, in response to information about the state of the krill stock or the wider ecosystem (Constable 2002, Trathan & Agnew 2010, SC-CAMLR 2011). CCAMLR's scientific working groups aim to develop a “feedback management procedure” (SC-CAMLR 2011) to address these issues. They have considered the use of data from the fishery, small-scale krill surveys (e. g. Brierley et al. 2002) and krill predators (Constable 2002, Hill et al. 2010) to indicate the state of the ecosystem. However, further work is required on all aspects of the proposed procedure, including definition of its specific objectives.
CCAMLR has not, to date, agreed a management approach that will prevent excessive localized depletion of the krill stock, and consequent impacts on krill predators, if catches increase beyond the interim catch limit. It therefore retains the interim limit and has recently established additional caps within the fishery's four subareas (CCAMLR 2012d).
The Antarctic krill catch increased from 126 000 t in 2001/02 to 181 000 t in 2010/11. This expansion coincided with new developments in harvesting and processing technology and new markets for krill products (Nicol et al. 2012, CCAMLR 2012a). Catches remain below 0.4% of the estimated available biomass in the Scotia Sea and southern Drake Passage (60.3 x 10 6 t), while the interim catch limit is around 1% of this estimate. These values are low compared with most established fisheries elsewhere in the world (FAO 2012) and compared to the standard reference points used to evaluate sustainability (Worm et al. 2009) but some authors have questioned whether any krill fishing is sustainable (Jacquet et al. 2010).
The decision rules represent a practical solution to the need to balance effects on different ecosystem components, which did not require an economic valuation of the relevant ecosystem services. However, CCAMLR has not yet identified an approach which balances these effects at the appropriate ecological scale, and so relies on interim management measures. The current challenges facing the managers of the krill fishery include increasing demand for krill products, public interest in other ecosystem services that krill may support, and the pressure of climate change. CCAMLR is attempting to meet these challenges through developing a “feedback management procedure”.
Consideration of the character and status of ecosystem services.
Antarctic krill is an important species in much of the Southern Ocean, where it is a major prey item for a diverse community of predators including fish, seabirds, marine mammals and cephalopods (Atkinson et al. 2009, Hill et al. 2012). Ecosystem components of interest to CCAMLR therefore include the Antarctic krill stock and its predators. CCAMLR and the wider research community are actively addressing questions about the status and trends of these components. CCAMLR's ecosystem monitoring programme (CEMP) was established in 1987. It aims to detect and record significant changes in critical components of the marine ecosystem and to distinguish between changes due to harvesting of commercial species and changes due to environmental variability, both physical and biological (Croxall 2006). CEMP monitors Antarctic krill and nine predator species (penguins, albatrosses and fur seals) representing the ‘dependent and related populations’ referred to in the Convention's principles of conservation ( Fig. 1 ). The monitored ecosystem components are consistent with the three-way trade-off. The choice of monitored components therefore reinforces the assumption that krill predators are suitable indicators of the wider state of the ecosystem. The spatial scales and species for which the state of predator populations should be evaluated to inform krill fishery management remain to be defined.
In 2000, CCAMLR conducted a multi-national large-scale synoptic survey to estimate the biomass of Antarctic krill in 2 x 10 6 km 2 of the Scotia Sea and southern Drake Passage (Hewitt et al. 2004a). Some CCAMLR Members also monitor krill biomass in smaller areas. For example, the UK has estimated biomass in an area of at least 8000 km 2 to the north of South Georgia since 1981 and on a regular basis since 1996 (Brierley et al. 2002). A series of studies that integrate data from national science programmes has, independently of CCAMLR, produced recent estimates of circumpolar krill biomass and production, and an assessment of trends in krill abundance (Atkinson et al. 2004, 2009). Other studies, mainly associated with CEMP data, have assessed the status and trends of various krill predator populations (e. g. Forcada et al. 2005, Forcada & Trathan 2009). Turner et al. 's (2009) review of Antarctic climate change and environment collated much of the relevant information from published scientific studies, while Flores et al. (2012) provided a more krill-focused review.
Many national science programmes and several international science coordination and implementation bodies have a Southern Ocean focus, addressing questions about the status and trends of ecosystems (e. g. Murphy et al. 2012). These programmes have sometimes identified a particular ecosystem service, or the need to manage activities that affect ecosystem services, as the motivation or benefit of their research, but none has aimed to provide a comprehensive assessment of ecosystem status and trends.
Definitions of the desirable states of ecosystem components and of the fishery (and therefore undesirable states to avoid) remain elusive (Hill 2013b). Two prominent recent studies have suggested tentative reference points for “forage” species, such as krill, that support diverse predators. Cury et al. (2011) analysed the relationship between prey availability and seabird breeding success. They recommended maintaining forage species above a third of the maximum biomass observed in long-term studies. Smith et al. (2011) used ecosystem models to assess the propagation of fishery impacts through the foodweb. They suggested maintaining forage species above 75% of their unexploited biomass. Each of these reference points carries caveats which will need to be addressed before implementation. The Cury et al. (2011) analysis was based on aggregated data from a range of ecosystems, including the Scotia Sea. Simplistic application of its recommendations to the krill fishery suggests that krill should be maintained at levels which were only observed in six of the 21 years analysed. This highlights the difficulties in practical application of universal reference points. More detailed consideration of the scale of predator foraging, the response of different predators, and the current state of the ecosystem will be necessary to develop recommendations for the krill fishery. The 75% reference point has already been used to suggest overall krill catch limits, but CCAMLR recognizes that by itself this does not provide adequate protection against localized depletion of krill and consequent impacts on predators (Hewitt et al. 2004b).
Consideration of beneficiaries of ecosystem services.
The Preamble to the Antarctic Treaty (1959) recognized that peaceful use of the Antarctic and scientific cooperation are in the interests of “all mankind” (ats. aq/documents/ats/treaty_original. pdf, accessed April 2013). The Convention states a commitment to “rational use”, which is often interpreted by CCAMLR Members as meaning sustainable fishing. However, the Convention does not explicitly define the term, meaning that it can be applied to the use of other ecosystem services (Watters et al. in press).
Questions about the ability of ecosystem services to supply local needs are inappropriate for the Southern Ocean due to the geographical separation between these ecosystem services and their beneficiaries. This fact might partly explain why there has been little direct consideration within CCAMLR of the relationships between ecosystem services and human well being.
The fishing industry and its employees, suppliers and customers are direct beneficiaries of the Antarctic krill fishery. The beneficiaries of other ecosystem services that the fishery could impact are less clearly defined, although these could include tourists, scientists, and others who might benefit from the maintenance of predator populations and the wider ecosystem (see Table I ). The consensus decision-making in CCAMLR provides a mechanism for accommodating multiple opinions representing multiple ways of valuing different ecosystem services. However, consensus decision-making also has recognized drawbacks including the disproportionate influence of minority opinions and a tendency to default to the status quo. For many Members there will be pressure to ensure that decisions are defensible in terms of both the Convention and public opinion. Nonetheless, in order to have an influence, opinions must be represented at national government level, and there is no automatic requirement to represent all beneficiaries, or to consider the relative value of different ecosystem services to different beneficiaries.
Several conservation-focused non-governmental organisations (NGOs) also take an interest in krill fishery issues. Some of these have observer status within CCAMLR under the umbrella of the Antarctic and Southern Ocean Coalition. However, few interest groups or direct beneficiaries have stated their specific objectives for krill fishery management. Hill (2013a) noted that most groups identify “sustainability” as a key requirement but that few have provided a tangible definition of this term. Furthermore, some uses of this term are mutually contradictory. Nonetheless, Österblom & Bodin (2012) reported that 117 diverse organizations responded to the crisis of IUU harvesting of toothfish in the Southern Ocean with shared purpose. Their actions resulted in a substantial reduction in IUU fishing. This suggests that effective cooperation between diverse interest groups is possible.
CCAMLR faces the challenge of making operational decisions on the basis of its conservation principles that are acceptable to a diverse community of beneficiaries and interest groups. At present there is little information about the values that these groups place on ecosystem services, or their specific objectives for the ecosystem or the fishery. The types of question posed by ecosystem assessments might help to identify these values and objectives.
Consideration of future change.
The MA examined how ecosystems and the services they provide might change under plausible future scenarios. This is a key question being asked by many Antarctic-focused national science programmes and international coordinating bodies including the Scientific Committee on Antarctic Research and the Integrating Climate and Ecosystem Dynamics in the Southern Ocean programme (Murphy et al. 2012), in conjunction with ATS bodies including CCAMLR. The Intergovernmental Panel on Climate Change intends to increase its coverage of the status and prognosis for Southern Ocean ecosystems with a dedicated chapter in the forthcoming Fifth Assessment Report. The impetus for such activity has come mainly from the scientific community but the strong interaction between scientists and decision makers within CCAMLR ensures shared purpose.
The paucity of historical data presents a particular challenge for defining baseline status and relative reference points for living components of the Southern Ocean ecosystem (Hill et al. 2006, Trathan et al. 2012). Clarke & Harris (2003) and Turner et al. (2009) identified key influences on the current status of Antarctic ecosystems, and suggest potential ecosystem responses to further change. Climate forcing is a major influence on the Southern Ocean ecosystem (Everson et al. 1992, Turner et al. 2009). This apparently results from complex interactions between natural climate processes, and the anthropogenic effects of the ozone hole and greenhouse gases (Turner et al. 2009, Turner & Overland 2009). Although limited human activity in the Southern Ocean constrains the potential direct influences (Trathan & Agnew 2010), potentially important drivers of change include: fishing; the ongoing consequences of historical exploitation of seals, whales and fish; pollution; disease; and invasive species (Clarke & Harris 2003, Trathan & Reid 2009).
The Convention identifies the importance of the effects of fishing and associated activities “on the marine ecosystem and of the effects of environmental changes”. CCAMLR's 2009 resolution 30/XXVIII (ccamlr. org/en/resolution-30/xxviii-2009, accessed April 2013) also recognized the importance of climate change, urging “increased consideration of climate change impacts in the Southern Ocean to better inform CCAMLR management decisions” and encouraging “an effective global response to address the challenge of climate change”. These statements require ongoing consideration of how to secure the delivery of a limited set of ecosystem services while minimizing the impact on others. Further work remains necessary to quantify and forecast environmental change, to understand levels of uncertainty, and to assess potential impacts on ecosystem services, including their social and economic implications.
토론.
The previous sections have provided a preliminary characterization of the Southern Ocean's ecosystem services, demonstrating their global importance in terms of climate regulation, food supply and the maintenance of biodiversity. The high estimated value of the Antarctic krill stock relative to global fishery landings provides an illustration of this global significance. We have also discussed the extent to which the functions of ecosystem assessment are already integrated into the management of the Antarctic krill fishery. This demonstrates that trade-offs between the benefits obtained from harvesting and the potential impacts on other ecosystem services are a major component of CCAMLR's decision-making process.
The governance system for the Southern Ocean offers unique opportunities for managing the trade-offs between ecosystem services because its influence covers a whole ocean ecosystem. In 2009, CCAMLR designated a Marine Protected Area located entirely within the High Seas (CCAMLR 2012c). This global first is an important milestone in protecting ecosystems that are beyond national jurisdiction. Furthermore the Convention's principles of conservation effectively require management that accounts for such trade-offs. The developing management of the Antarctic krill fishery acknowledges these trade-offs, but simplifies them to a three-way consideration of fishery performance and the status of krill and predator populations. It is appropriate to assess whether this three-way trade-off fully represents CCAMLR's responsibilities under the Convention and the wider ATS. CCAMLR faces further challenges in developing its management approach, and in ensuring that this approach is co-ordinated with organizations responsible for other human activities at both the global and regional scale.
The ecosystem services of the Southern Ocean are a global resource from which all of mankind indirectly benefits. Most beneficiaries of these ecosystem services never have any direct contact with the ecosystem. There is, however, a small and relatively privileged group of direct beneficiaries that includes fishing and tourism companies, affluent tourists and consumers of the premium products (such as krill oil and Antarctic toothfish) derived from Antarctic fisheries. These activities also create employment and therefore another category of beneficiary. In their consideration of growing demand for marine fisheries products, Garcia & Rosenburg (2010) identified krill as a resource that could perhaps support further exploitation. Thus, the composition of the group of direct beneficiaries could change over time. The spatial disconnect between the ecosystem services and the majority of beneficiaries means that the role of interest groups as intermediaries between beneficiaries and managers is particularly pronounced. There is an important distinction between beneficiaries and interest groups. Beneficiaries include the whole human race benefiting from a wide range of ecosystem services, while interest groups often focus on a narrow set of benefits and objectives. The specific requirements of beneficiaries are not currently well understood with the consequence that CCAMLR is yet to define operational objectives for the state of the krill stock, its predators and the wider ecosystem (Hill 2013a, 2013b, Watters et al. in press).
The Southern Ocean ecosystem is strongly influenced by human activities elsewhere (Clarke & Harris 2003), and is particularly vulnerable to the effects of climate change (Turner et al. 2009). Ecosystem managers arguably have a duty to maintain the regulatory and supporting services required for healthy ecosystems, and therefore to ensure appropriate interaction with the wider global community on such issues. Identifying objectives that are consistent with its responsibility and influence are an additional challenge faced by CCAMLR.
Ecosystem assessment could help CCAMLR to meet these various challenges by providing a comprehensive characterization of the status, trends, and drivers of change to ecosystems and the services they provide for human well-being. A regional ecosystem assessment for the Southern Ocean would address its under-representation in existing global assessments. Such an assessment would also have benefits for CCAMLR and the wider ATS. Firstly, it would increase knowledge about the connections between the broad suite of Southern Ocean ecosystem services and the social and economic goals of CCAMLR Members. Clearer information on the value of ecosystem services would address the existing need for information about the objectives for each component of the three-way trade-off. It would also promote consideration of ecosystem services that are not currently represented in decision-making. Secondly, an assessment which gives equal consideration to the full range of provisioning, supporting, regulating and cultural services would be a substantial undertaking involving a wide community. This, in itself, could help forge more substantial links between the different components of the ATS. The end product would provide a consistent basis for coordinating activities related to managing or understanding ecosystem impacts.
The information presented here could provide a starting point for such an assessment. New research would be needed to fill some obvious gaps such as the spatial mapping (e. g. Naidoo et al. 2008, Maes et al. 2011) and economic valuation (e. g. Costanza et al. 1997) of ecosystem services, and the assessment would serve as a gap analysis to highlight other data needs. Best-practice developed in many other regional assessments could be useful (Ash 2010). CCAMLR is a user of information on the status and trends of marine ecosystems but it does not fund or directly mandate the collection of such data. The reliance of CCAMLR on donated information is a significant challenge to both the achievement of an ecosystem assessment and the long-term management of ecosystem services in the Southern Ocean (Hill 2013a, 2013b). There are several potential solutions, including a new initiative by the fishing industry to support the scientific work of CCAMLR (Nicol et al. 2012). We acknowledge that an ecosystem assessment would be a significant task in terms of resource requirements and coordination effort, but we believe it would deliver significant and long-term practical benefits.
결론.
The ecosystem services provided by the Southern Ocean are significant on a global scale, as illustrated by the potential of Antarctic krill to supply the equivalent of 11% of current world fishery landings. The terms “ecosystem services” and “ecosystem assessment” are not commonly used within the community concerned with managing human activities in the Southern Ocean. Nonetheless this community is actively gathering and applying much of the information that ecosystem assessments seek to collate. The Convention, in particular, articulates the requirement to consider trade-offs between ecosystem services. The management of the krill fishery represents a practical implementation of this requirement despite a lack of information about how beneficiaries value the relevant ecosystem services. A formal ecosystem assessment could provide necessary information on the wider suite of ecosystem services that fishing might interact with and how beneficiaries value these services. Such information is likely to aid the future development of krill fishery management and help remove the current reliance on interim measures. Formal and comprehensive ecosystem assessment would require considerable investment but could substantially improve coordination between management bodies focused on different human activities at both the regional and global scale.
감사 인사.
This paper is a contribution to the Natural Environment Research Council core-funded British Antarctic Survey Ecosystems programme. We are grateful to Sigve Nordum of Aker Biomarine for supplying some of the information presented in Table II .

No comments:

Post a Comment